Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses.

Identifieur interne : 001084 ( Main/Exploration ); précédent : 001083; suivant : 001085

Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses.

Auteurs : Chen Seng Ng [Japon] ; Michihiko Jogi ; Ji-Seung Yoo ; Koji Onomoto ; Satoshi Koike ; Takuya Iwasaki ; Mitsutoshi Yoneyama ; Hiroki Kato ; Takashi Fujita

Source :

RBID : pubmed:23785203

Descripteurs français

English descriptors

Abstract

In response to stress, cells induce ribonucleoprotein aggregates, termed stress granules (SGs). SGs are transient loci containing translation-stalled mRNA, which is eventually degraded or recycled for translation. Infection of some viruses, including influenza A virus with a deletion of nonstructural protein 1 (IAVΔNS1), induces SG-like protein aggregates. Previously, we showed that IAVΔNS1-induced SGs are required for efficient induction of type I interferon (IFN). Here, we investigated SG formation by different viruses using green fluorescent protein (GFP)-tagged Ras-Gap SH3 domain binding protein 1 (GFP-G3BP1) as an SG probe. HeLa cells stably expressing GFP-G3BP1 were infected with different viruses, and GFP fluorescence was monitored live with time-lapse microscopy. SG formations by different viruses was classified into 4 different patterns: no SG formation, stable SG formation, transient SG formation, and alternate SG formation. We focused on encephalomyocarditis virus (EMCV) infection, which exhibited transient SG formation. We found that EMCV disrupts SGs by cleavage of G3BP1 at late stages of infection (>8 h) through a mechanism similar to that used by poliovirus. Expression of a G3BP1 mutant that is resistant to the cleavage conferred persistent formation of SGs as well as an enhanced induction of IFN and other cytokines at late stages of infection. Additionally, knockdown of endogenous G3BP1 blocked SG formation with an attenuated induction of IFN and potentiated viral replication. Taken together, our findings suggest a critical role of SGs as an antiviral platform and shed light on one of the mechanisms by which a virus interferes with host stress and subsequent antiviral responses.

DOI: 10.1128/JVI.03248-12
PubMed: 23785203


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses.</title>
<author>
<name sortKey="Ng, Chen Seng" sort="Ng, Chen Seng" uniqKey="Ng C" first="Chen Seng" last="Ng">Chen Seng Ng</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jogi, Michihiko" sort="Jogi, Michihiko" uniqKey="Jogi M" first="Michihiko" last="Jogi">Michihiko Jogi</name>
</author>
<author>
<name sortKey="Yoo, Ji Seung" sort="Yoo, Ji Seung" uniqKey="Yoo J" first="Ji-Seung" last="Yoo">Ji-Seung Yoo</name>
</author>
<author>
<name sortKey="Onomoto, Koji" sort="Onomoto, Koji" uniqKey="Onomoto K" first="Koji" last="Onomoto">Koji Onomoto</name>
</author>
<author>
<name sortKey="Koike, Satoshi" sort="Koike, Satoshi" uniqKey="Koike S" first="Satoshi" last="Koike">Satoshi Koike</name>
</author>
<author>
<name sortKey="Iwasaki, Takuya" sort="Iwasaki, Takuya" uniqKey="Iwasaki T" first="Takuya" last="Iwasaki">Takuya Iwasaki</name>
</author>
<author>
<name sortKey="Yoneyama, Mitsutoshi" sort="Yoneyama, Mitsutoshi" uniqKey="Yoneyama M" first="Mitsutoshi" last="Yoneyama">Mitsutoshi Yoneyama</name>
</author>
<author>
<name sortKey="Kato, Hiroki" sort="Kato, Hiroki" uniqKey="Kato H" first="Hiroki" last="Kato">Hiroki Kato</name>
</author>
<author>
<name sortKey="Fujita, Takashi" sort="Fujita, Takashi" uniqKey="Fujita T" first="Takashi" last="Fujita">Takashi Fujita</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23785203</idno>
<idno type="pmid">23785203</idno>
<idno type="doi">10.1128/JVI.03248-12</idno>
<idno type="wicri:Area/PubMed/Corpus">000522</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000522</idno>
<idno type="wicri:Area/PubMed/Curation">000520</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000520</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000530</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000530</idno>
<idno type="wicri:Area/Ncbi/Merge">000582</idno>
<idno type="wicri:Area/Ncbi/Curation">000582</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000582</idno>
<idno type="wicri:Area/Main/Merge">001085</idno>
<idno type="wicri:Area/Main/Curation">001084</idno>
<idno type="wicri:Area/Main/Exploration">001084</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses.</title>
<author>
<name sortKey="Ng, Chen Seng" sort="Ng, Chen Seng" uniqKey="Ng C" first="Chen Seng" last="Ng">Chen Seng Ng</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jogi, Michihiko" sort="Jogi, Michihiko" uniqKey="Jogi M" first="Michihiko" last="Jogi">Michihiko Jogi</name>
</author>
<author>
<name sortKey="Yoo, Ji Seung" sort="Yoo, Ji Seung" uniqKey="Yoo J" first="Ji-Seung" last="Yoo">Ji-Seung Yoo</name>
</author>
<author>
<name sortKey="Onomoto, Koji" sort="Onomoto, Koji" uniqKey="Onomoto K" first="Koji" last="Onomoto">Koji Onomoto</name>
</author>
<author>
<name sortKey="Koike, Satoshi" sort="Koike, Satoshi" uniqKey="Koike S" first="Satoshi" last="Koike">Satoshi Koike</name>
</author>
<author>
<name sortKey="Iwasaki, Takuya" sort="Iwasaki, Takuya" uniqKey="Iwasaki T" first="Takuya" last="Iwasaki">Takuya Iwasaki</name>
</author>
<author>
<name sortKey="Yoneyama, Mitsutoshi" sort="Yoneyama, Mitsutoshi" uniqKey="Yoneyama M" first="Mitsutoshi" last="Yoneyama">Mitsutoshi Yoneyama</name>
</author>
<author>
<name sortKey="Kato, Hiroki" sort="Kato, Hiroki" uniqKey="Kato H" first="Hiroki" last="Kato">Hiroki Kato</name>
</author>
<author>
<name sortKey="Fujita, Takashi" sort="Fujita, Takashi" uniqKey="Fujita T" first="Takashi" last="Fujita">Takashi Fujita</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier Proteins (antagonists & inhibitors)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Cytokines (genetics)</term>
<term>DNA Helicases</term>
<term>DNA Viruses (pathogenicity)</term>
<term>Encephalomyocarditis virus (immunology)</term>
<term>Encephalomyocarditis virus (pathogenicity)</term>
<term>Encephalomyocarditis virus (physiology)</term>
<term>Gene Expression</term>
<term>Gene Knockdown Techniques</term>
<term>Green Fluorescent Proteins (genetics)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>HeLa Cells</term>
<term>Host-Pathogen Interactions (genetics)</term>
<term>Host-Pathogen Interactions (immunology)</term>
<term>Humans</term>
<term>Immunity, Innate (genetics)</term>
<term>Interferons (genetics)</term>
<term>Mutation</term>
<term>Poly-ADP-Ribose Binding Proteins</term>
<term>RNA Helicases</term>
<term>RNA Recognition Motif Proteins</term>
<term>RNA Viruses (pathogenicity)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Ribonucleoproteins (immunology)</term>
<term>Ribonucleoproteins (metabolism)</term>
<term>Stress, Physiological</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules HeLa</term>
<term>Cytokines (génétique)</term>
<term>Expression des gènes</term>
<term>Helicase</term>
<term>Humains</term>
<term>Immunité innée (génétique)</term>
<term>Interactions hôte-pathogène (génétique)</term>
<term>Interactions hôte-pathogène (immunologie)</term>
<term>Interférons (génétique)</term>
<term>Mutation</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Protéines de transport (antagonistes et inhibiteurs)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Protéines à fluorescence verte (génétique)</term>
<term>Protéines à fluorescence verte (métabolisme)</term>
<term>Protéines à motif de reconnaissance de l'ARN</term>
<term>RNA helicases</term>
<term>Ribonucléoprotéines (immunologie)</term>
<term>Ribonucléoprotéines (métabolisme)</term>
<term>Réplication virale</term>
<term>Stress physiologique</term>
<term>Techniques de knock-down de gènes</term>
<term>Virus de l'encéphalomyocardite (immunologie)</term>
<term>Virus de l'encéphalomyocardite (pathogénicité)</term>
<term>Virus de l'encéphalomyocardite (physiologie)</term>
<term>Virus à ADN (pathogénicité)</term>
<term>Virus à ARN (pathogénicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Carrier Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Carrier Proteins</term>
<term>Cytokines</term>
<term>Green Fluorescent Proteins</term>
<term>Interferons</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Ribonucleoproteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carrier Proteins</term>
<term>Green Fluorescent Proteins</term>
<term>Recombinant Fusion Proteins</term>
<term>Ribonucleoproteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA Helicases</term>
<term>Poly-ADP-Ribose Binding Proteins</term>
<term>RNA Helicases</term>
<term>RNA Recognition Motif Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Host-Pathogen Interactions</term>
<term>Immunity, Innate</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cytokines</term>
<term>Immunité innée</term>
<term>Interactions hôte-pathogène</term>
<term>Interférons</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines de transport</term>
<term>Protéines à fluorescence verte</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Interactions hôte-pathogène</term>
<term>Ribonucléoprotéines</term>
<term>Virus de l'encéphalomyocardite</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Encephalomyocarditis virus</term>
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines de fusion recombinantes</term>
<term>Protéines de transport</term>
<term>Protéines à fluorescence verte</term>
<term>Ribonucléoprotéines</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>DNA Viruses</term>
<term>Encephalomyocarditis virus</term>
<term>RNA Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus de l'encéphalomyocardite</term>
<term>Virus à ADN</term>
<term>Virus à ARN</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus de l'encéphalomyocardite</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Encephalomyocarditis virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression</term>
<term>Gene Knockdown Techniques</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mutation</term>
<term>Stress, Physiological</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HeLa</term>
<term>Expression des gènes</term>
<term>Helicase</term>
<term>Humains</term>
<term>Mutation</term>
<term>Protéines à motif de reconnaissance de l'ARN</term>
<term>RNA helicases</term>
<term>Réplication virale</term>
<term>Stress physiologique</term>
<term>Techniques de knock-down de gènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In response to stress, cells induce ribonucleoprotein aggregates, termed stress granules (SGs). SGs are transient loci containing translation-stalled mRNA, which is eventually degraded or recycled for translation. Infection of some viruses, including influenza A virus with a deletion of nonstructural protein 1 (IAVΔNS1), induces SG-like protein aggregates. Previously, we showed that IAVΔNS1-induced SGs are required for efficient induction of type I interferon (IFN). Here, we investigated SG formation by different viruses using green fluorescent protein (GFP)-tagged Ras-Gap SH3 domain binding protein 1 (GFP-G3BP1) as an SG probe. HeLa cells stably expressing GFP-G3BP1 were infected with different viruses, and GFP fluorescence was monitored live with time-lapse microscopy. SG formations by different viruses was classified into 4 different patterns: no SG formation, stable SG formation, transient SG formation, and alternate SG formation. We focused on encephalomyocarditis virus (EMCV) infection, which exhibited transient SG formation. We found that EMCV disrupts SGs by cleavage of G3BP1 at late stages of infection (>8 h) through a mechanism similar to that used by poliovirus. Expression of a G3BP1 mutant that is resistant to the cleavage conferred persistent formation of SGs as well as an enhanced induction of IFN and other cytokines at late stages of infection. Additionally, knockdown of endogenous G3BP1 blocked SG formation with an attenuated induction of IFN and potentiated viral replication. Taken together, our findings suggest a critical role of SGs as an antiviral platform and shed light on one of the mechanisms by which a virus interferes with host stress and subsequent antiviral responses. </div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région du Kansai</li>
</region>
<settlement>
<li>Kyoto</li>
</settlement>
<orgName>
<li>Université de Kyoto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Fujita, Takashi" sort="Fujita, Takashi" uniqKey="Fujita T" first="Takashi" last="Fujita">Takashi Fujita</name>
<name sortKey="Iwasaki, Takuya" sort="Iwasaki, Takuya" uniqKey="Iwasaki T" first="Takuya" last="Iwasaki">Takuya Iwasaki</name>
<name sortKey="Jogi, Michihiko" sort="Jogi, Michihiko" uniqKey="Jogi M" first="Michihiko" last="Jogi">Michihiko Jogi</name>
<name sortKey="Kato, Hiroki" sort="Kato, Hiroki" uniqKey="Kato H" first="Hiroki" last="Kato">Hiroki Kato</name>
<name sortKey="Koike, Satoshi" sort="Koike, Satoshi" uniqKey="Koike S" first="Satoshi" last="Koike">Satoshi Koike</name>
<name sortKey="Onomoto, Koji" sort="Onomoto, Koji" uniqKey="Onomoto K" first="Koji" last="Onomoto">Koji Onomoto</name>
<name sortKey="Yoneyama, Mitsutoshi" sort="Yoneyama, Mitsutoshi" uniqKey="Yoneyama M" first="Mitsutoshi" last="Yoneyama">Mitsutoshi Yoneyama</name>
<name sortKey="Yoo, Ji Seung" sort="Yoo, Ji Seung" uniqKey="Yoo J" first="Ji-Seung" last="Yoo">Ji-Seung Yoo</name>
</noCountry>
<country name="Japon">
<region name="Région du Kansai">
<name sortKey="Ng, Chen Seng" sort="Ng, Chen Seng" uniqKey="Ng C" first="Chen Seng" last="Ng">Chen Seng Ng</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001084 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001084 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23785203
   |texte=   Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23785203" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021